PROCEDURES FOR THE INSTALLATION OF ACTIVE ADVANCED WARNING SIGNS (AAWS) AT RAIL CROSSING SITES

Includes Amendment 1

Issue Date: January 2009
Forward

This guideline has been developed by VicRoads. It is one of a number of technical guideline, and associated standard drawings, which set out the requirements for roadside ITS devices, traffic signal equipment and other electrical equipment and associated devices and control systems.

This guideline is intended for use in all relevant works undertaken by or on behalf of VicRoads.

Specification updates. VicRoads guidelines and associated standard drawings are subject to periodic review. To keep the specifications up to date, amendments or new editions are issued as necessary. It is therefore important for users of VicRoads specifications to ensure that they have the latest version and associated amendments.

Road User Services Group
60 Denmark Street Kew 3101

Phone: (03) 9854 2103 Fax: (03) 9854 2319

Amendments

<table>
<thead>
<tr>
<th>No. 1</th>
<th>June 2009</th>
<th>Removal of Attachment 1. Available as separate document.</th>
</tr>
</thead>
</table>

COPYRIGHT

© Roads Corporation trading as VicRoads. All rights reserved.

This document remains the property of VicRoads. No part of this document may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of VicRoads.
Contents

1 GENERAL ..5
 1.1 Introduction ...5
 1.2 Purpose ..5
 1.3 System Description ..6

2 FACTORY TESTING ...6
 2.1 General ...6

3 PRE-INSTALLATION ...6
 3.1 Access Card for AAWS Controllers ..6
 3.2 Site Number Request ...7
 3.3 Risk Workshop ..9
 3.4 Site Meeting ..9

4 PRE SWITCH-ON ..9
 4.1 Construction Audit ...9
 4.2 Controller Functional Tests ...9
 4.3 Communications Test ..9

5 SWITCH-ON ..10
 5.1 Commissioning ...10
 5.2 Controller Communications Tests ...10

6 RAI UPDATE ..10
 6.1 Site status and details update in RAI ..10

7 MAINTENANCE..11
 7.1 Variation to Maintenance Contracts ...11
 7.2 Incident Management ...11
 7.3 Fault Procedures ..12

APPENDIX A ..13
 Program Delivery Procedures ..13

APPENDIX B ..17
 AAWS GUI Operation and Communications Testing Guidelines17
1 GENERAL

1.1 Introduction
In June 2007 the Victorian government announced a program to improve level crossing safety in Victoria. Part of that program includes the installation of automated advance warning signs at 53 rail crossing sites across the state commencing in 2007. The signs will be constructed on the side of the roads approximately 250 metres prior to the level crossing and will be activated automatically when a train is approaching the crossing.

This document provides installation and maintenance guidelines to VicRoads staff and contractors for the new Active Advance Warning Signs (AAWS) system. It also provides step by step procedures in case of system faults or any other incidents.

![Typical AAWS sign with two yellow flashing LED lights](image)

1.2 Purpose
The purpose of Active Advanced Warning Signs (AAWS) is to provide an early indication to road users that a level crossing (with at least Flashing Light protection) is about to operate or is already operating. The signs are triggered by the approach of a train and provide additional visible warning to drivers.
1.3 System Description

Details of typical AAWS layouts are given in the Australian Standard AS1742.7 – 2007 Manual of Uniform Traffic Control Devices, Part 7: Railway Crossing. Guidance is also given on the illumination and reflection of signs, on their installation and location, and on selecting the appropriate sign size.

VicRoads specification TCS057 specifies the requirements for the supply and installation of the roadway components of the system, including the signs and the signal controller. Flashing yellow lights are activated and deactivated upon receipt of appropriate input signals from the railway level crossing protection system. Details of the operation of the system and the various inputs and outputs between the railway system and the AAWS are specified in Section 3 of TCS 057-2-2007.

One sign per approach is adopted in a typical installation; more signs may be erected for approaches with poor site alignment. The VicRoads controller will be connected to the VicRoads Traffic Management Centre (TMC) for monitoring purposes. The communication back to TMC is achieved using 3G mobile technology.

A Program Delivery Overview is provided in Appendix A. The flowchart outlines the milestones of a typical AAWS installation and highlights the responsibilities of VicRoads Regional Services Support (RSS), regional staff and VicTrack in delivering the system.

2 FACTORY TESTING

2.1 General

Each AAWS controller undergoes full factory testing prior to site installation. Complete system functionality is typically tested using the test site number 99998 or 99999. Any faults logged in the AAWS Host System using this test site number are not recorded into MMS. This is achieved by not ticking the “Send Alarm” box in the AAWS GUI (see Appendix B).

Final testing is then conducted using the actual site number.

3 PRE-INSTALLATION

3.1 Access Card for AAWS Controllers

VicTrack manages the program of controller installations as well as other civil works and provides a list of upcoming installations to Regional Services Support (RSS) about 6 months in advance. A bulk purchase of access cards is then organised by RSS and provided to VicTrack. After allocating the SIM cards to individual sites, a spreadsheet with relevant SIM card details will be distributed to RSS and relevant regional offices by VicTrack. Please note that the SIM cards are kept with VicTrack and will be passed directly to the installation contractors.
3.2 Site Number Request

A site number request shall be placed in the ITS Site & Slot Number Requests Database as it would be for a traffic signal site. The Regional Office shall provide the Site Number to VicTrack within two weeks upon receiving the forecast installation list.

Before launching a request for site number, the responsible VicRoads Officer should check if there is a site number already allocated to the AAWS. To do this, open the Road Asset Inventory Database (RAI Inventory.NET).

After logging in to RAI Inventory, select RailXing Warning Signs from the top left drop down box and click Search. The result will give all records of AAWS which are currently in the system, as shown in 0.

If there is no match result in the database, a request for a Site Number shall be submitted using the Lotus Notes database by opening the ITS Site & Slot Number Requests database shown in 0.
After selecting a Site Request, the system comes up with the Site Type Selection screen as shown in 0. Select **RAILWAY CROSSING ADVANCE WARNING SIGN** as circled below and then click OK.

![Site Type Selection](image)

All mandatory fields are marked with a star in the application form as shown in 0. For any additional information or site details, enter in the Comments field. Hit the Submit button when finished.

** Please ensure the **SIM card details** such as Mobile Number, Data Number and the SIM Number are entered in the Comments field at the bottom of the request form so that Mobile Information of the controller can be entered into RAI accordingly.

![Site Number Request Application Form](image)

An email advising the allocated Site Number will be sent from the database manager within one week of application. The responsible VicRoads Officer is to provide the Site Number to VicTrack so that Public Information Label can be installed on the controller cabinet accordingly at site commissioning.
3.3 Risk Workshop

Risk Workshops are organised by VicTrack to brief risk assessments on AAWS installations. Officers from VicRoads regional offices will be invited to attend Risk Workshop.

3.4 Site Meeting

It is intended that VicTrack will inform the VicRoads Regional Office at least four weeks in advance of installation. Prior to any installation, a meeting should be held with VicTrack and the responsible VicRoads Officer.

4 PRE SWITCH-ON

4.1 Construction Audit

Before commissioning, the Regional Office should inspect and sign off all works associated with the AAWS system.

4.2 Controller Functional Tests

Full functional testing is conducted in the factory. The only tests required on site are as follows:

- Normal Controller Operation functions on
 - “Cable Monitor”
 - “Call” function operations
 - “System Operational” indicator
 - “Indicator Light”
 - “System in Manual Mode” indicator
 - “Manual Test Switch”
 - “Flashing Lights”
 - “Battery Back-Up”

4.3 Communications Test

Communications Test shall be conducted on site as listed in Section 6.2 of this document.
5 SWITCH-ON

5.1 Commissioning
At commissioning, the responsible VicRoads Officer shall be present to sign off on the installation. It is recommended that the Maintenance Contractor is also present for the commissioning. In addition, a representative from ITS will typically be invited to attend also.

At this hand over meeting any required on-site training, any spare parts and manuals should be provided by VicTrack to the VicRoads Maintenance Contractor. The responsible VicRoads Officer shall seek warranties and / or defects period information from VicTrack. A list of contact details in case of emergency must be provided to the responsible VicRoads Officer, including after hours telephone contacts.

5.2 Controller Communications Tests
Following the Controller Functional Tests, Communications Tests between the controller and TMC shall be conducted if power is available. The Communications Tests shall satisfy the followings:

- Ability to establish communications from site to TMC utilising Rail Crossing GUI in TMC
- Ability to establish communications from TMC to site using Rail Crossing GUI

Guidelines for on site Communications Tests can be found in Appendix B.

6 RAI UPDATE

6.1 Site status and details update in RAI
Once the site is in operation, the Site Status and Switch-On details require updating in the RAI Database. The responsible VicRoads Officer shall enter this information within 24 hours after commissioning. This will ensure that the region and TMC know a new site is connected to the network and who to contact if there is any problem.

The responsible VicRoads Officer shall update details in both “Sites” and “RailXing Warning Signs” views in RAI database.
7 MAINTENANCE

7.1 Variation to Maintenance Contracts

The responsible VicRoads Officer is to inform the Maintenance Contractor of when the new equipment is installed, and any maintenance requirements including required response times. Where appropriate, variations to existing maintenance contracts may need to be negotiated and agreed.

7.2 Incident Management

VicRoads is responsible for the maintenance of the controller, signs and lights. The railway infrastructure manager is responsible for the maintenance of the railway signals and detectors.

When the TMC receives an advice that a fault has been detected in an AAWS, the Maintenance Contractor will be responsible for the initial response and investigation.

In case of a fault, the Maintenance Contractor shall keep the TMC informed of the progress and the responsible VicRoads Officer (business hours) or TMC (after hours) shall advise the rail infrastructure manager of the incident and its progress through the relevant Train Control Centre phone number if applicable.
7.3 Fault Procedures

The AAWS system will be maintained by the local maintenance contractor. Faults should be responded to as detailed in the following Table:

<table>
<thead>
<tr>
<th>Fault</th>
<th>Description</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications Fault</td>
<td>Unable to establish communications with site</td>
<td>Manually try to connect to site.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check that there is no fault in VicRoads equipment. If no fault at VicRoads end, call out Contractor.</td>
</tr>
<tr>
<td>Mains Failure (BO)</td>
<td>The mains have failed.</td>
<td>Contact local Supply Authority to determine if there is a problem in the area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No need to call out Contractor.</td>
</tr>
<tr>
<td>Battery Critical</td>
<td>The controller has been running on batteries for 4 hours.</td>
<td>Call out Contractor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advise Train Control Centre.</td>
</tr>
<tr>
<td>Lamp Fail</td>
<td>A yellow warning light has failed.</td>
<td>Call out Contractor.</td>
</tr>
<tr>
<td>Lamp Supply Fault</td>
<td>Mains supply to the flashing lights has failed.</td>
<td>Call out Contractor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advise Train Control Centre.</td>
</tr>
<tr>
<td>Rail Cable Monitor Fault</td>
<td>The cable connecting the railway control box with the AAWS controller has failed.</td>
<td>Contact VicTrack to determine if they have a railway fault on site.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If VicTrack have a fault, no action required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If VicTrack do not have a fault, call out Contractor.</td>
</tr>
<tr>
<td>Facility Switch in 'Manual' Mode</td>
<td>The system has been activated manually.</td>
<td>Attempt to confirm if anyone is on site.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If no one is known to be on site, call out Contractor.</td>
</tr>
<tr>
<td>Door Open</td>
<td>The controller door has been opened.</td>
<td>Attempt to confirm if anyone is on site.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If no one is known to be on site, call out Contractor.</td>
</tr>
</tbody>
</table>

Table 7.3 - Rail Crossing Advanced Warning Sign Record in RAI
APPENDIX A

Program Delivery Procedures
Page intentionally left blank
AAWS Program Delivery Procedures

<table>
<thead>
<tr>
<th>VicRoads Responsibility</th>
<th>Action</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contract awarded to VicTrack for design and construction</td>
<td></td>
</tr>
<tr>
<td>Team Leader - Road Safety</td>
<td>Review and approve detailed design plans submitted by VicTrack</td>
<td></td>
</tr>
<tr>
<td>RSS</td>
<td>Organise and provide SIM cards to VicTrack upon receipt of upcoming installations list (prepared by VicTrack)</td>
<td>4.1</td>
</tr>
<tr>
<td>Signal Main. Officer and Surveillance Officer</td>
<td>Attend Risk Workshop(s) organised by VicTrack</td>
<td>4.3</td>
</tr>
<tr>
<td>Signal Main. Officer</td>
<td>Provide site number(s) to VicTrack upon receipt of upcoming installation list and allocated SIM details</td>
<td>4.2</td>
</tr>
<tr>
<td>Signal Main. Officer / Surveillance Officer</td>
<td>Attend pre-installation site meeting(s) organised by VicTrack</td>
<td>4.4</td>
</tr>
<tr>
<td>Signal Main. Officer</td>
<td>Inform Maintenance Contractor regarding new installation and make variation to existing contract if appropriate</td>
<td>7.1</td>
</tr>
<tr>
<td>Signal Main. Officer / Surveillance Officer</td>
<td>Conduct construction audit and Controller Functional Tests</td>
<td>5.1, 5.2</td>
</tr>
<tr>
<td>VicTrack, Region, & Maintenance Contractor</td>
<td>Attend Test, Switch on & Commissioning on site and sign off installation</td>
<td>6.1, 6.2</td>
</tr>
<tr>
<td>Signal Main. Officer</td>
<td>Update RAI and manage site with Maintenance Contractor</td>
<td>7.1</td>
</tr>
</tbody>
</table>
APPENDIX B

AAWS GUI Operation and Communications Testing Guidelines
AAWS GUI Operation and Communications Testing Guidelines

B1 General

The following information is intended to provide operational for TMC officers.

B2 The AAWS GUI

A Graphical User Interface (GUI) has been developed for use by TMC operators to simplify the commissioning and interrogation procedures for AAWS. This GUI can also be used to add new sites to the AAWS system. Figure B1 show a screen capture of the GUI. There are a total of nine fields for each site entry. These fields are detailed below.

<table>
<thead>
<tr>
<th>Field Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Site number as listed in the RAI database.</td>
</tr>
<tr>
<td>PHONE</td>
<td>Data number of the mobile SIM card. Note: One site has a hard wired telephone connection.</td>
</tr>
<tr>
<td>ALARM CODE</td>
<td>RAILCRX: This code indicates that the site is active. TESTCRX: This code indicates that the site is still in the test phase and has not been activated.</td>
</tr>
<tr>
<td>DESCR</td>
<td>The address of the site.</td>
</tr>
<tr>
<td>LAMPS</td>
<td>Indicates how many single aspect yellow lanterns are connected. Note: Each sign includes two single aspect yellow lanterns.</td>
</tr>
<tr>
<td>DIAL OUT?</td>
<td>If this box is "ticked" it indicates that the AAWS system will automatically dial the site each day to check the status.</td>
</tr>
<tr>
<td>SEND EMAIL?</td>
<td>If this box is "ticked" it indicates that any system reported faults will be automatically emailed to a specified list of recipients.</td>
</tr>
<tr>
<td>SEND ALARM?</td>
<td>If this box is 'ticked' any system reported faults will be passed to MMS.</td>
</tr>
<tr>
<td>STATUS</td>
<td>'Outgoing call' indicates the last system requested status response. 'Incoming call' indicates the last incoming fault report from site.</td>
</tr>
</tbody>
</table>
B3 GUI operation

The GUI allows the user to carry out the following tasks:

- Get site status;
- Add a new site; and
- Look at the details of the last data received from the site.

B3.1 Site status

To check the status of a site simply click the drop down menu titled ‘Get site status’. A message will appear saying ‘……dialling station xxxx……’. When the request has been received this message will change to ‘Dial out status: Site status received for xxxx’. A pop-up window will then appear displaying the site status details.
B3.2 Adding a new site

A new site can be added to the system by clicking the ‘Add site’ button and filling in the relevant details.

B3.3 Checking last site status message

The last status message can be viewed by left-clicking the mouse in the ‘STATUS’ column. A pop-up window will then appear displaying the last site status details received.

B4 Testing Communications

This section provides guidelines to TMC officers, responsible VicRoads Officers and Maintenance Contractors for the Switch-On of Active Advance Warning Signs (AAWS) system.
B4.1 Prior to installation

At least 24 hours prior to installation of the controller, the Contractor shall notify TMC of the programmed works detailing the date and time this will take place.

B4.2 Communications Testing

The switch-on/commissioning phase includes testing communications between the site and the TMC.

- **a.** After successful completion of Controller Functional Testing (see Clause 4.2), the Contractor shall notify TMC that the Switch-On is under way;
- **b.** When the above notification is received, the TMC officer shall open the Railway Level Crossing GUI;
- **c.** The Contractor shall simulate a fault and confirm with the TMC officer that it appears in the GUI ‘STATUS’ column and in MMS. This will confirm the controller can establish communications with VicRoads;
- **d.** After confirmation, the Contractor will remove the simulated fault;
- **e.** Using GUI, the TMC officer shall dial the controller and confirm that communications can be established from VicRoads.

Successful completion of the above confirms that communications can be established.

B4.3 Setting the site to Active

The site should now be set to ‘active’ in the GUI. This is done as follows:

- **a.** Click on the ‘ALARM CODE’ box and delete ‘TESTCRX’;
- **b.** In the ‘ALARM CODE’ box type in ‘RAILCRX’;
- **c.** Tick the ‘DIAL OUT’ box;
- **d.** Remove the tick from the ‘SEND EMAIL’ box;
- **e.** Tick the ‘SEND ALARM’ box;
- **f.** Click the ‘Update Server’ button.

The GUI has now been updated. It may be necessary to close the program and restart it to see the changes.