1. The cross slope of the approach and runout area preferably should be 5 to 1 or flatter. The grading details on this drawing only apply to the situation where this is impractical.

2. The cross slope of the first 10m (measured parallel to the direction of traffic) of the runout area immediately behind the terminal should be 5 to 1 or flatter. If this is not achievable the cross slope should be no steeper than 4 to 1 with the height of batter not exceeding the limits of Table 1.

3. Desirably the cross slope of the grading approaching the guard fence terminal and adjacent to it for its full length should be 5 to 1. However, if the existing cross slope is flat or is a positive slope due to the superelevation of the roadway pavement, the minimum lengths of the grading hinge point behind the gating section of terminal is essential to prevent snagging of the vehicle.

4. Existing slopes which classify as hazardous in accordance with Austroads Guide to Road Design (AGRD) Part 6 and that are located within the clear zone shall be viewed as a hazard and shielded in accordance with AGRD Part 6 and relevant VicRoads supplements, refer 'Z' values in SD 3511 and 3521 or the run-out method in AGRD Part 6.

5. The transition to match existing slopes should be at least the minimum length required to provide a traversable slope in the direction of traffic. AGRD Part 6 specifies a traversable slope is 1 in 7 flatter for trucks and 4 in 10 for cars.

6. The transition to match existing slope shall be at least the minimum length required to provide a traversable slope in the direction of traffic, and part 6 specifies a traversable slope is 1 in 7 flatter for trucks and 4 in 10 for cars.

5. Offset of the grading hinge point behind the gating section of terminal is essential to prevent snagging of the vehicle.

6. The minimum runout area specified in this drawing is not achievable consideration in preference should be given to:

(i) Extending the barrier upstream of the proposed location to achieve the minimum runout area.

(ii) Providing the maximum achievable runout area given existing site constraints also supported with a documented risk evaluation, or

(iii) The area should at least be similar in character to the adjacent unsheilded roadside area supported with a documented risk evaluation.

Table 1: Maximum Height of Fill Batter

<table>
<thead>
<tr>
<th>Fill Batter Slope</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>No Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Fill Height (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. All dimensions are in millimetres unless shown otherwise.

2. Safety barrier technology standards and general requirements shall be in accordance with SD 3521.

3. Safety barrier shall be VicRoads accepted products in accordance with SD 3545.

4. VicRoads accepted safety barrier products in accordance with SD 3521 and 3545, VicRoads barriera alignment details.

5. VicRoads accepted safety barrier products in accordance with SD 3545.