1. **Scope**

This method is used in conjunction with the relevant field density and laboratory compaction test methods to determine, for 6 tests per lot, as appropriate to test lots of materials and soils for earthworks and pavements (including asphalt and concrete in pavements):

- the mean and standard deviation of the density ratio, moisture variation and moisture ratio, and in-situ air voids ratio; and
- the characteristic density ratio (CDR) and characteristic moisture ratio (CMR), and characteristic percentage in-situ air voids (CAV).

The method is also used for 3 tests per lot, to determine mean values for density ratio and moisture ratio, and for in-situ air voids if appropriate.

The method also provides actions when some test sites exceed the permitted amount of 40 mm nominal size material, or when the core thickness is less than the minimum.

2. **Procedure**

2.1. **Material Record**

Record material source, placed location and nominal size.

2.2. **Test Lot Bounds**

A test lot consists of a single layer, batch or area of like work which has been constructed or produced under essentially uniform conditions and is essentially homogeneous with respect to material type, general appearance, test rolling response, moisture condition during compaction, compaction technique and nature of underlying materials. Discrete portions of a lot which are non-homogeneous with respect to material and appearance shall be excluded from the lot and shall be either treated as separate lots, or reworked. The extent of each lot shall not exceed one day's production.

Areas within 200 mm of the edges of construction or within 2 metres of either lateral construction joints or ends of trenches, shall be excluded from the lot.

Soils and pavement materials which do not appear essentially homogeneous and are not uniform in terms of maximum particle size and particle size distribution may be included provided that materials are of similar origin and type, and laboratory compaction tests are performed on material from each field density site.

2.3. **Selection of a Lot**

The boundaries of the lot must be defined. Any areas to be excluded from the lot on the basis of appearance or test-rolling response are to be designated prior to the selection of sites.

2.4. **Selection of Test Sites within a Lot**

Select the required number \((n = 3 \text{ or } 6, \text{ as appropriate to lot size})\) of randomly located test sites within the test lot in accordance with RC 316.10, or AS 1289.1.4.2.

Normal lots, with 6 tests per lot, have a maximum allowed area defined in the appropriate standard specification section. Acceptance of the lot shall be based on the characteristic density ratio and characteristic moisture ratio, and characteristic percentage in-situ air voids, as appropriate, determined from 6 individual tests per lot.

Any lot which has a surface area less than 500 m\(^2\) may be treated as a small area. Acceptance of the lot shall be based on the mean values of density ratio and moisture ratio, or percentage air voids for 3 individual tests (Refer VicRoads Standard Specification Section 173, Clause 173.04(d)).

For earthworks and pavement construction, 3 tests per lot shall be used for Compaction Scale C.

2.5. **At each test site:**

Report individual values as required by the referenced test method.

Un-rounded values shall be used in further calculation.

2.5.1 **for earthworks and pavement materials:**

(except materials covered by (b) and (c))

Either:

(a) Determine the dry density ratio \((R_D)\), moisture variation \((w)\) and moisture ratio \((R_m)\) in accordance with AS 1289.5.4.1, or

(b) Determine the Hilf wet density ratio \((R_{HD})\), and moisture variation \((w_V)\) in accordance with AS 1289.5.7.1.

In addition, determine the field moisture content to calculate and report moisture ratio in accordance with AS 1289.5.7.1 clause 4.1(h).
2.5.2 for earthworks or pavement materials stabilised with cementitious binders in-situ:

The following procedure shall be used to determine the Density Ratio (DR or R_D) for each test site:

Note 1: VicRoads Sections 290 and 307 use DR for Density Ratio, the relevant Australian Standards for the tests use RD for Density Ratio.

Note 2: The density decay correction factor will need to be determined through one of the options at step (g) prior to testing commencing.

(a) Record the date and time of addition of cementitious binder, and binder type, used in the field;

(b) Measure field density on completion of compaction;

(c) Extract samples and transport to an offsite laboratory;

(d) Determine the reference density for the laboratory compacted samples as soon as practicable, but not exceeding 24 hours, after addition of cementitious binder, and record the time and date of completion of Laboratory Compaction;

(e) Calculate the elapsed time (t) between step (a) and step d);

(f) Calculate a density ratio at time t (DR_D or R_D) based on the results of items (b) and (d) above;

(g) Determine the density decay correction factor (DDCF) corresponding to the elapsed time (t), by either:

(i) testing in accordance with RC 330.03, for work where the total job area meets the requirements of VicRoads Section 290, Clause 290.14(c)(ii) 5(A), or

(ii) for earthworks materials stabilised with cementitious binders in-situ, using Table 290.143 provided in VicRoads Section 290; for work where the total job area meets the requirements of VicRoads Section 290, Clause 290.14(c)(ii) 5(B), or

(iii) for pavement materials stabilised with cementitious binders in-situ, using Table 307.131 provided in VicRoads Section 307.

(h) Determine the test site Density Ratio (DR or R_D) from the following equation:

\[
R_D = R_{D_t} \times DDCF, \quad \text{where}
\]

\[
R_{D_t} = \text{Density Ratio, in percent}
\]

\[
R_{D_t} = \text{dry density ratio calculated using the reference density determined at time } t, \text{ in percent}
\]

\[
DDCF = \text{Density Decay Correction Factor, determined at step (e), corresponding to the elapsed time (t), the binder type and the time of year construction is being undertaken}
\]

(i) Use the calculated value determined in step (h) as the density ratio (DR or R_D) for the site, and if the value is used in further calculations, then rounding is applied at reporting.

2.5.3 for asphalt:

Determine the density ratio (DR) and the percentage in-situ air voids in accordance with AS 2891.14.5.

The reference density to be used for asphalt testing shall be the assigned maximum density of the asphalt calculated as the 6 point rolling average maximum density of the production mix, in accordance with AS 2891.14.5, Appendix A, Item (e), except that 6 samples shall be used.

3. Calculations

Calculate the following values as required, as detailed in Table 1 and as appropriate either for 6 tests per lot (all steps, and n=6), or for 3 tests per lot (steps (a), (d), (f), (i) only, and n = 3).

Note that specific symbols apply for density ratio (see Table 2) and that specific steps are relevant to test results either from AS 1289.5.4.1, AS 1289.5.7.1, or both, or from AS 2891.14.5, as appropriate.

All calculated values are in percent. Rounding of values to the nominated precision shall occur at reporting.

Table 1 - Calculation and reporting test values

<table>
<thead>
<tr>
<th>Number of tests (n) within oversize material requirements</th>
<th>Calculate and Report (as appropriate to material)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CDR, CMR, CAV; and mean values and standard deviations</td>
</tr>
<tr>
<td>5, or 4</td>
<td>Mean density ratio, Mean moisture ratio, Mean moisture variation, Mean air voids ratio</td>
</tr>
<tr>
<td>3 or less, Note (b) applies</td>
<td>All individual values only</td>
</tr>
<tr>
<td>For 3 test-site lot</td>
<td>Mean air voids ratio</td>
</tr>
<tr>
<td>3</td>
<td>Mean density ratio, Mean moisture ratio, Mean air voids ratio</td>
</tr>
<tr>
<td>2 or less, Note (b) applies</td>
<td>All individual values only</td>
</tr>
<tr>
<td>The test report shall include one of the following statements, if appropriate :</td>
<td></td>
</tr>
<tr>
<td>Note (a) Insufficient test results are available to calculate characteristic values</td>
<td></td>
</tr>
<tr>
<td>Note (b) Insufficient test results are available to calculate mean values</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For small areas and Compaction Scale C, only mean density ratio is required; and when applicable, only mean moisture ratio or mean moisture variation is required.

Note 2: On occasions, some test lots deliver insufficient test results, either due to the presence of excessive material of nominal size greater than 40 mm (VicRoads Section 173.04), or core thickness less than the minimum (VicRoads Section 407.22).

Where this occurs, the modifications detailed in Table 1 to the calculation of lot characteristics shall apply, as appropriate, and the relevant statement (Note (a) or Note (b) of Table 1) shall be included on the test report.
3.1. From density tests for the lot, calculate as appropriate:

Table 2 - Equations and symbols for density ratio calculations

<table>
<thead>
<tr>
<th>From tests to AS 1289.5.4.1</th>
<th>From tests to AS 1289.5.7.1</th>
<th>From tests to AS 2891.14.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) The mean density ratio of the test lot (n sites), for:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{R_D}{n} = \frac{\sum R_D}{n}) \text{ or } \frac{R_{HD}}{n} = \frac{\sum R_{HD}}{n} \text{ or } MDR = \frac{\sum DR}{n})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) The standard deviation of the density ratio ((S_{DR})) of the test lot (n = 6 sites):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{DR} = \sqrt{\frac{\sum (R_D - R) ^ 2}{n}})</td>
<td>(S_{DR} = \sqrt{\frac{\sum (R_{HD} - R) ^ 2}{n}})</td>
<td>(S_{DR} = \sqrt{\frac{\sum (MDR - DR) ^ 2}{n}})</td>
</tr>
<tr>
<td>(c) The characteristic density ratio ((CDR)) of the test lot (n = 6 sites) below which a nominated percentage (20%) of the lot falls:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CDR = R_D = 0.92 \times S_{DR})</td>
<td>(CDR = R_{HD} = 0.92 \times S_{DR})</td>
<td>(CDR = MDR = 0.92 \times S_{DR})</td>
</tr>
</tbody>
</table>

where: \(S_{DR} \) = the standard deviation for density ratio (n = 6)
\(MDR = \text{the mean density ratio of the test lot, in percent, as appropriate to material tested} \)
\(\sum R_D, \sum R_{HD}, \sum DR \) = the sum of the dry density ratio values \((R_D) \), or Hilf wet density ratio values \((R_{HD}) \), or density ratio values for asphalt \((DR) \), for \(n \) test sites.

3.2. From moisture variation tests

Calculate as appropriate for the lot:

(d) The mean value of the moisture variation \((\bar{W}_v) \) of the test lot (n sites):
\[\bar{W}_v = \frac{\sum W}{n} \text{ or } \bar{W}_v = \frac{\sum W_v}{n} \]

where \(\sum W \) = the sum of the moisture variation values, \((w) \) obtained using AS 1289.5.4.1, for \(n \) test sites.
\(\sum W_v \) = the sum of the moisture variation values, \((w_v) \) obtained using AS 1289.5.7.1, for \(n \) test sites.

(e) When applicable, the standard deviation of the moisture variation \((S_{Wv}) \) of the test lot (n = 6 sites):
\[S_{Wv} = \sqrt{\frac{\sum (W_v - W_v) \^ 2}{5}} \]

3.3. From tests to AS 1289.5.4.1

Calculate as appropriate for the lot:

(f) The mean moisture ratio \((\bar{R}_m) \) of the test lot (n sites):
\[\bar{R}_m = \frac{\sum R_m}{n} \]

where \(\sum R_m \) = the sum of the moisture ratio values \((R_m) \), for \(n \) test sites.

(g) The standard deviation of the moisture ratio \((S_{Mr}) \) of the test lot (n = 6 sites):
\[S_{Mr} = \sqrt{\frac{\sum (R_m - R_m) \^ 2}{5}} \]

3.4. From tests to AS 2891.14.5

Calculate as appropriate for the lot:

(i) The mean percentage in-situ air voids \((\bar{AV}) \) of the test lot (n sites):
\[\bar{AV} = \frac{\sum AV}{n} \]

where \(\sum AV \) = the sum of the percentage in-situ air voids, \((AV) \), for \(n \) test sites.

(j) The standard deviation of the percentage in-situ air voids \((S_{AV}) \) of the test lot (n = 6 sites):
\[S_{AV} = \sqrt{\frac{\sum (AV - AV) \^ 2}{5}} \]

(k) The characteristic percentage in-situ air voids \((CAV) \) of the test lot (n = 6 sites), below which a nominated percentage (20%) of the lot falls:
\[CAV = \bar{AV} - (0.92 \times S_{AV}) \]
4. Reporting

4.1. Report, for all testing, as appropriate:
 (a) The type, source, placed location and nominal size of the material.
 (b) The location of the test sites in relation to site chainages and offsets from the centreline(s).
 (c) Compactive effort, appropriate to the test method, used to obtain laboratory reference values for soils.
 (d) As applicable, the report number for the reference values, the assigned values, or the asphalt mix design bulk density.
 (e) The test methods used to determine laboratory reference values and field density and moisture content values.
 (f) Reporting requirements of either AS 1289.5.4.1, AS 1289.5.7.1 or AS 2891.14.5 and referred methods, including reference values and test site values.
 (g) If applicable, the method of preparation of the sample for laboratory determination of reference values if the soil is stabilised.
 (h) The mean density ratio of the test lot, in percent, to the nearest 0.1 %.
 (i) For normal lots, the standard deviation of the density ratio, and the characteristic density ratio, of the test lot, in percent, to the nearest 0.1 %.
 (j) Reference to this Test Method (RC 316.00).

4.2. Report, when applicable:
 (a) For normal lots for earthwork and pavement materials: the moisture variation and moisture ratio for each test site, the mean moisture ratio, the standard deviation of the moisture ratio, and the characteristic moisture ratio, in percent, to the nearest 0.1 %.
 (b) For earthwork and pavement materials that have been stabilised with cementitious binders in-situ: the value of Density Decay Correction Factor used to determine Density Ratio and the source of this value (either report number for testing to RC 330.03, or the table provided in VicRoads Standard Specification Section 290, or the table provided in VicRoads Standard Specification Section 307).
 (c) For normal lots for asphalt: mean percentage in-situ air voids of the test lot, the standard deviation of the percentage in-situ air voids, and the characteristic percentage in-situ air voids, in percent, to the nearest 0.1 %.
 (d) Where less than 6 test sites are available, report the test values as detailed in Table 1.
 (e) If and when applicable, a statement that characteristic values, or mean values when appropriate, cannot be determined (Refer Table 1, Note (a) or Note (b) for text).

To receive this publication in an accessible format, please request using VicRoads online message feedback form.