VicRoads Supplement to Austroads Guide to Road Design


January 2017
## Amendment Record

<table>
<thead>
<tr>
<th>Rev. No. Date Released</th>
<th>Section/s Update</th>
<th>Description of Revision</th>
<th>Authorised By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1.0 July 2010</td>
<td>First Edition</td>
<td>Development of Supplement</td>
<td>ED – Network &amp; Asset Planning</td>
</tr>
<tr>
<td>Rev. 1.1 Sept 2010</td>
<td>Various</td>
<td>Minor changes to text, references and layouts. Figure 5.1 &amp; figures in table updated</td>
<td>Principal Advisor – Road Design, Traffic &amp; Standards</td>
</tr>
<tr>
<td>Rev. 2.0 July 2011</td>
<td>Section 2.2.7</td>
<td>Livestock Crossings</td>
<td>Principal Advisor – Road Design, Traffic &amp; Standards</td>
</tr>
<tr>
<td></td>
<td>Section 5.3.1</td>
<td>Car Stopping Sight Distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 7.1</td>
<td>Compound Curves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 7.6.1</td>
<td>Minimum Radius Curves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 8.4.2</td>
<td>Grading Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 8.5.3</td>
<td>Maximum Grades</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 8.6.3</td>
<td>Crest Vertical Curves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 8.6.5</td>
<td>Sag Curves</td>
<td></td>
</tr>
<tr>
<td>Rev. 3.0 Sept 2012</td>
<td>Section 3.3</td>
<td>Operating Speeds on Urban Roads</td>
<td>Principal Advisor – Road Design, Traffic &amp; Standards</td>
</tr>
<tr>
<td></td>
<td>Section 3.4</td>
<td>Operating Speeds on Rural Roads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 4.7</td>
<td>Medians</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 4.4</td>
<td>Verge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 4.6</td>
<td>Roadside Drainage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 5.2</td>
<td>Sight Distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 7.6</td>
<td>Side Friction &amp; Minimum Curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>General edits &amp; corrections</td>
<td></td>
</tr>
<tr>
<td>Rev. 3.1 Dec 2012</td>
<td>Section 4.6</td>
<td>Roadside Drainage</td>
<td>Principal Advisor – Road Design, Traffic &amp; Standards</td>
</tr>
<tr>
<td></td>
<td>Section 10.2</td>
<td>Bridge Cross Section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>General edits &amp; corrections</td>
<td></td>
</tr>
<tr>
<td>Rev. 4.0 Jan 2017</td>
<td>Various</td>
<td>Significant review to reflect changes to AGRD Part 3</td>
<td>Principal Advisor – Road Design &amp; Traffic</td>
</tr>
</tbody>
</table>

This VicRoads Supplement must be read in conjunction with the Austroads Guide to Road Design.

Reference to any VicRoads or other documentation refers to the latest version as publicly available on VicRoads website or other external source.
# Table of Contents

References .......................................................................................................................... 5

1. **Introduction** .............................................................................................................. 6
   1.3 Design Criteria ........................................................................................................ 6

2. **Fundamental Considerations** .................................................................................... 6
   2.2 Design Parameters .................................................................................................. 6
      2.2.2 Road Classification .......................................................................................... 6
      2.2.7 Design Vehicle ................................................................................................. 6
      2.2.10 Access Management ...................................................................................... 7

3. **Speed Parameters** ..................................................................................................... 7
   3.3 Operating Speeds on Urban Roads ........................................................................ 7
      3.3.1 Melbourne Arterial Road Network .................................................................. 7
      3.3.2 Metropolitan Freeways/Motorways ............................................................... 7
   3.4 Operating Speeds on Rural Roads .......................................................................... 8
      3.4.1 Major Rural Cities ............................................................................................ 8
      3.4.2 Rural Highways and Intermediate/High Speed Rural Roads ....................... 8

4. **Cross Section** ........................................................................................................... 8
   4.1 General .................................................................................................................... 8
      4.1.1 Functional Classification of Road Network .................................................... 8
      4.2.4 Traffic Lane Widths ......................................................................................... 8
      4.2.5 Urban Road Widths ......................................................................................... 8
      4.2.6 Rural Road Widths ........................................................................................... 9
      V4.2.7 Over Dimensional (OD) Vehicles ................................................................. 9
   4.3 Shoulders ................................................................................................................ 10
      4.3.3 Shoulder Sealing ............................................................................................. 10
   4.6 Roadside Drainage .................................................................................................. 14
      4.6.4 Kerb and channel ............................................................................................ 14
   4.7 Medians .................................................................................................................. 17
      4.7.1 Median Width .................................................................................................. 17
      4.8.13 Advisory Treatments .................................................................................... 18
   4.9 High Occupancy Vehicle (HOV) Lanes ................................................................. 18
      4.9.2 Bus Lanes ........................................................................................................ 18
      4.9.3 Tram/Light Rail Vehicle (LRV) Lanes – Tram Track Design Standards .......... 18
   4.10 On-street Parking .................................................................................................. 18
      4.10.3 Angle Parking ................................................................................................ 18
      4.10.4 Centre of Road Parking ................................................................................ 18
   4.11 Services Roads, Outer Separators and Footpaths .................................................. 18
      4.11.1 Service Roads (from RDG 3.2) ..................................................................... 18
      4.11.3 Urban Border ................................................................................................ 18
   4.12 Bus Stops ................................................................................................................. 18
      4.12.1 General .......................................................................................................... 18
      4.12.2 Urban (Indented bus stop bays) .................................................................... 18
      4.12.3 Rural .............................................................................................................. 19
5. **Sight Distance** ................................................................. 19
   5.1 General 19
   5.2 Sight Distance Parameters .................................................. 19
   5.2.2 Driver Reaction Time ...................................................... 19

7. **Horizontal Alignment** ....................................................... 20
   7.5.1 Compound Curves .......................................................... 20

7.7 Superelevation ................................................................. 21
   7.7.5 Length of superelevation Development .............................. 21
   7.7.10 Positioning of Superelevation Runoff without Transitions ... 22
   7.7.11 Positioning of Superelevation Runoff with Transitions ........ 23

8. **Vertical Alignment** .......................................................... 23
   8.2.3 Flood Levels or Water Table (from RDG 2.5.4.2) ................. 23
   8.2.5 Underground Services .................................................... 23

8.5 Grades 24
   8.5.3 Maximum Grades .......................................................... 24

8.6 Vertical Curves ................................................................. 24
   8.6.1 General ................................................................. 24

9. **Auxiliary Lanes** ............................................................... 26
   9.5 Climbing Lanes ............................................................... 26
   9.5.1 General ................................................................. 26

9.6 Slow Vehicle Turnouts .......................................................... 26
   9.6.2 Slow Vehicle Turnouts .................................................. 26

9.9 Geometric Requirements ...................................................... 27
   9.9.2 Tapers ................................................................. 27
   9.9.3 Starting and Termination Points ....................................... 27

10. **Bridge Considerations** .................................................... 28
    10.1 General 28

Appendices ................................................................. 29
    Appendix A Extended Design Domain (EDD) for Geometric Road Design .... 29
    Appendix E Narrow Median Treatments with Wire Rope Safety Barrier (WRSB) .. 29
    Appendix I Reverse Curves .................................................. 29
    Appendix J Transition Curves (from RDG Part 2 Appendix F4) ............... 32
References

AGRD – Austroads Guide to Road Design
AGTM – Austroads Guide to Traffic Management
GTEP – Guide to Traffic Engineering Practice (superseded)
VRD/RDG – VicRoads Road Design Guidelines (superseded)


VicRoads (latest). RDN 06-06: Guidelines for the Placement of Tactile Ground Surface Indicators.
VicRoads (latest). VicRoads Supplement to AGRD Part 2
VicRoads (latest). VicRoads Supplement to AGRD Part 6
VicRoads (latest). VicRoads Supplement to AGRD Part 6B
1. Introduction

1.3 Design Criteria

Refer to VicRoads Supplement to Austroads Guide to Road Design (AGRD) Part 2, Section 2.3 for VicRoads approved policy and process regarding the use of Extended Design Domain (EDD).

2. Fundamental Considerations

2.2 Design Parameters

2.2.2 Road Classification

VicRoads uses a functional classification system for its rural arterial road network. Four classifications are provided which include M, A, B, C. The classification reflects both the function and standard of the road. These classifications are also used in the state route numbering scheme. Refer VicRoads Supplement to Austroads Guide to Traffic Management Part 4 – Network Management.

M Roads are duplicated freeways or expressways connecting the capital cities and major provincial centres, and linking major centres of production with Victoria's export terminals;

A Roads are two-lane two way roads which serve the same role as M roads but carry less traffic.

B Roads provide the primary link between major regions not served by A roads, and also highly significant tourism regions.

C Roads provide the more important links between other centres of populations, and between these centres and the primary transport network.

2.2.7 Design Vehicle

Refer to VicRoads Supplement to AGRD Part 4, Section 5.2 for further information regarding choice and application of Design Vehicles in Victoria.

Design Considerations for Trucks (from RDG 2.2.5.1)

Refer to Table V2.1 for design considerations for trucks.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PROVISION FOR TRUCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersections</td>
<td>Provide for the swept paths of trucks. Refer to Austroads Design Vehicles and Turning Path Templates. Provide sufficient stopping distance (lateral sight distance restrictions are often critical). Provide sufficient sight distances to allow trucks to turn safely on each road. Provide radii appropriate for the turning speeds of trucks.</td>
</tr>
<tr>
<td>Horizontal curves</td>
<td>As far as possible, avoid locating features which are likely to require trucks to brake on curves, such as intersections where the main road is on a low radius curve. Alternatively, provide truck stopping sight distances.</td>
</tr>
</tbody>
</table>
Reverse curves | Provide either straights 0.6V metres long or spirals between reverse curves to allow for the spiral tracking of trucks. Where deceleration is required on the approaches to a lower radius curve, sufficient distance must be provided to enable truck drivers to react and decelerate.

Compound curves | If deceleration is likely to be required, allow sufficient distance for truck drivers to react and decelerate.

Spirals | Provide spirals where required for trucks, see AGRD Part 3, Section 7.5.4.

Grades | Provide sufficient signs to warn truck drivers of steep downhill grades. Provide adequate sight distance on approaches to curves on steep downhill grades.

Sag vertical curves | Provide stopping sight distance and adequate clearance beneath overpasses.

Superelevation | Avoid adverse superelevation wherever practicable. Check that superelevation has been increased on downgrades.

Notes
1. The speed to be used for determining each sight distance referred to in Table V2.1 is the truck operating speed for the particular direction of travel.

2.2.10 Access Management
Refer to VicRoads Supplement to AGRD Part 6B, Section V2.2.4 for further information regarding livestock access.

3. Speed Parameters

3.3 Operating Speeds on Urban Roads
Adoption of Operating Speed approach for Victoria as described in the Guide is acceptable.

3.3.1 Melbourne Arterial Road Network
Speed surveys are carried out twice per year on the arterial road network in the Melbourne metropolitan area. In 1994, 48 locations (24 sites x 2 directions) were selected for inclusion in the survey. During the period 2002 to 2005 another 28 additional locations (14 sites x 2 directions) were added to the survey program. The sites are grouped by speed limit, their previous speed limit and whether the carriageways are divided or undivided.

Review of survey results indicates that a significant reduction of operating speed occurred on the network between 2000 and 2004 and that operating speed has effectively stabilised at very close to the posted speed limit (as at 2012).

Adoption of an Operating Speed equivalent to the posted speed limit for design purposes in the Melbourne metropolitan area for arterial roads is considered acceptable.

3.3.2 Metropolitan Freeways/Motorways
A review of speed study results for these roads does not indicate the same change in driver behaviour as was demonstrated on the urban arterial network. An Operating Speed of 10km/h greater than the posted speed limit should be adopted for metropolitan freeways/ motorways.

When necessary, a risk-based approach using the available speed data may be adopted to assist in choosing an appropriate Operating Speed (less than 10 km/h greater than the posted speed limit) for a project where design controls warrant an alternative approach to ensure that a value-for-money design solution can be developed. The Extended Design Domain (EDD) approval process included in
3.4 Operating Speeds on Rural Roads

3.4.1 Major Rural Cities

The VicRoads speed survey currently does not include monitoring of major arterial roads located in major rural cities (i.e. Geelong, Ballarat etc.). It might be considered reasonable that a similar approach to the Melbourne metropolitan area be adopted for major rural cities that have an established arterial network and an appropriate speed enforcement program. Appropriate judgement is needed when considering adoption of Operating Speed equivalent to the posted speed limit in major rural cities. Such decisions should be supported by analysis of results from an appropriate speed survey.

3.4.2 Rural Highways and Intermediate/High Speed Rural Roads

A review of speed study results for these roads does not indicate the same change in driver behaviour as was demonstrated on the urban arterial network. An Operating Speed of 10km/h greater than the posted speed limit should be adopted for rural highways and high speed rural roads.

When necessary, a risk-based approach using the available speed data may be adopted to assist in choosing an appropriate Operating Speed (less than 10 km/h greater than the posted speed limit) for a project where design controls warrant an alternative approach to ensure that a value-for-money design solution can be developed. The Extended Design Domain (EDD) approval process included in VicRoads Supplement to AGRD Part 2 should be used to document decisions made to adopt Operating Speed less than 10 km/h greater than the posted speed limit for existing rural highways and intermediate/high speed rural roads.

4. Cross Section

4.1 General

4.1.1 Functional Classification of Road Network

VicRoads uses a functional classification system for its rural arterial road network. Four classifications are provided which include M, A, B, C. Refer Section 2.2.2 of this Supplement and VicRoads Supplement to Austroads Guide to Traffic Management Part 4 – Network Management.

4.2.4 Traffic Lane Widths

Victorian traffic lane widths are measured to the line of kerb. Refer Section 4.6.4 of this Supplement for clearances from line of kerb to traffic lanes for different kerb types.

Where a temporary track is placed on a tightly curved alignment, 4.0m minimum width should be provided for each lane and the remainder of the width should be provided by means of a full depth sealed shoulder.

4.2.5 Urban Road Widths

VicRoads accepts lane width values as per AGRD Part 3, Table 4.3. Table V4.1 provides VicRoads Urban Freeway lane and shoulder widths. Where a Freeway Management System is installed, narrower shoulder widths may be considered as discussed in AGRD Part 3, Appendix A.

Figures V4.4 and V4.5 are provided for general guidance and show cross sections commonly adopted in Victoria for various road types. Cross section requirements for specific projects should be...
confirmed during preparation of the functional design. In particular, opportunities to adopt Safe System elements into cross sections being considered for design should be investigated as a priority as part of establishing project scope.

Table V4.1: Urban Freeway Widths

<table>
<thead>
<tr>
<th>Element</th>
<th>Lane/Shoulder Width (m)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic lane(^{(1)})</td>
<td>3.5</td>
<td>General traffic lane width</td>
</tr>
<tr>
<td>Lane width on interchange ramps</td>
<td>3.5 – 4.5</td>
<td>Range of lane widths on interchange ramps (refer VicRoads Supplement to AGRD Part 4C for freeway ramp widths)</td>
</tr>
<tr>
<td>Left Shoulder(^{(2)}) (sealed for the full width)</td>
<td>3.0(^{(3)})</td>
<td>Minimum shoulder width adjacent to a safety barrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum shoulder widths on freeways of 3 or more lanes</td>
</tr>
<tr>
<td>Median Shoulder(^{(2)}) (sealed for the full width)</td>
<td>3.0(^{(3)})</td>
<td>Minimum shoulder width adjacent to a safety barrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum shoulder widths on freeways of 3 or more lanes</td>
</tr>
</tbody>
</table>

Notes:
1. Traffic lane widths include lane lines but are exclusive of edge lines.
2. Shoulder widths may be locally narrowed where there are overpass bridge piers or similar large constraint. Designers should maintain at least minimum clearances/offsets from traffic lanes to barriers where locally narrowing shoulders.
3. A 3.0m wide shoulder enables a truck to stop clear of the traffic lane.

Note:
Where the wearing course is placed on the traffic lane, but not the shoulders (e.g. open graded asphalt), this should extend for the full width of shoulders on the high sided of superelevation. The wearing course should extend a minimum of 0.3m beyond the edge line to minimise the risk associated with the edge drop off.

4.2.6 Rural Road Widths

Refer Section 2.2.2 and Section 4.1.1 of this Supplement for further information regarding functional classification and traffic lane widths to be adopted on Victorian Rural Road Network. M, A and B roads will have a distinctive appearance based on the minimum widths of carriageway elements.

For C roads and unclassified roads, the widths of cross section elements for new construction are mainly determined by traffic volume. The widths of carriageways are summarised in Table V4.2.

Figures V4.4 and V4.6 are provided for general guidance and show cross sections commonly adopted in Victoria for various road types. Cross section requirements for specific projects should be confirmed during preparation of the functional design. In particular, opportunities to adopt Safe System elements into cross sections being considered for design should be investigated as a priority as part of establishing project scope.

V4.2.7 Over Dimensional (OD) Vehicles

For further information regarding Over Dimensional (OD) vehicles refer to VicRoads guidelines for Oversize Load Carrying Vehicles (VicRoads, 2007) and Oversize and Overmass Special Purpose Vehicles (VicRoads, 2007) for specific requirements.
4.3 Shoulders

4.3.3 Shoulder Sealing

Refer to Table V4.2 for sealed shoulder widths.

Additional Information
(from RDG 3.6.2)

All M roads shall have full depth, full width shoulders. All A roads shall have shoulders partially sealed to 1.5m width. B roads may have shoulders sealed to 1.0m on sections which have a demonstrated record of run-off-road accidents. Consideration should be given to providing 1.0m sealed shoulders on the outside of curves on C roads.

Sealed shoulders reduce accident rates and there are road safety benefits where shoulders are sealed for 1.5m width. Fully or partly sealed shoulders offer further advantages for the longevity of the pavement, which should be considered when designing new construction or widenings. A full width seal should be considered where long vehicles are expected to track over the shoulders.

Table V4.2: Widths of Rural Carriageway Elements
(from RDG Table 3.6.3)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Lane Widths (m)</th>
<th>Shoulder Widths (m)</th>
<th>Sealed Shoulder (m)</th>
<th>Total Seal (m)</th>
<th>Carriageway (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Duplicated Carriageway 2 x 3.5 each</td>
<td>LHS 3.0 RHS 1.0</td>
<td>LHS 3.0 RHS 1.0</td>
<td>11.0 each</td>
<td>11.0(2) each</td>
</tr>
<tr>
<td>A</td>
<td>2 x 3.3 (AADT&lt;1500)</td>
<td>2.0</td>
<td>1.5</td>
<td>9.6</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>2 x 3.5 (AADT&gt;1500)</td>
<td>2.5</td>
<td>1.5</td>
<td>10.0(3)</td>
<td>12.0(2)</td>
</tr>
<tr>
<td>B</td>
<td>2 x 3.3 (AADT&lt;1500)</td>
<td>2.0</td>
<td>0(6)</td>
<td>6.6</td>
<td>10.6(2)</td>
</tr>
<tr>
<td></td>
<td>2 x 3.5 (1) (AADT&gt;1500)</td>
<td>2.0</td>
<td>1.0</td>
<td>9.0(3)</td>
<td>11.0</td>
</tr>
<tr>
<td>C</td>
<td>2 x 3.1 (AADT&lt;1500)</td>
<td>2.0</td>
<td>0(6)</td>
<td>6.2</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>2 x 3.5 (1) (AADT&gt;1500)</td>
<td>2.0</td>
<td>0(6)</td>
<td>7.0(5)</td>
<td>11.0</td>
</tr>
<tr>
<td>Local access</td>
<td>1 x 4.0</td>
<td>1.5</td>
<td>NA</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td>(51 – 150)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private access</td>
<td>1 x 3.0</td>
<td>2.0</td>
<td>NA</td>
<td>unsealed</td>
<td>7.0</td>
</tr>
<tr>
<td>(1 – 50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Where there are more than 500 trucks ADT two way on roads with unsealed shoulders
   a) Traffic lanes may be widened to 3.7 m, and
   b) Total seal on curves may be widened to provide tracking widths in AGRD Section 7.9.
3. Where road radius is less than 200 m, sealed width should be increased to provide tracking width in AGRD Section 7.9.
4. 1.0m sealed shoulder on designated tourist routes, designated tourist cyclists routes, Principal Freight Network and where warranted by accident record.
5. For definitions of M, A, B, C Roads, see Section 2.2 of this Supplement.
6. On routes less than 200 v.p.d, generally maintain existing pavement and widths on ‘C’ roads unless upgrading is warranted by exceptional traffic volumes or by crash records. New works in excess of 100m length will be constructed to the specified standards.
Figure V4.4: Typical Freeway Cross Sections (from RDG Figure 3.14.1)

EIGHT LANE URBAN FREEWAY

SIX LANE DEVELOPMENT OF EIGHT LANE ULTIMATE URBAN

SIX LANE URBAN FREEWAY

FOUR LANE RURAL FREEWAY M CLASS ROADS

FOUR LANE RURAL FREEWAY (WITH INDEPENDENT CARRIAGeways) M CLASS ROADS

NOTE:

1) MEDIAN WIDENING MAY BE REQUIRED AROUND SIGN GANTRIES OR FOR HIGHWAY LIGHTS.
2) VERGE WIDTH DEPENDS ON CHANGE OF SLOPE REFER TO TABLE 3.6.4.3
Figure V4.5: Typical Urban Road Cross Sections
(from RDG Figure 3.14.3)

UBER LOCAL

24E DESIRABLE MINIMUM

UBER COLLECTOR

Govered by allocation for services,
assuming no joint use of trench(es)

URBAN ARTERIAL ROADS

(B) BORDER - 7.3m to line desirable minimum
If trunk utility services are
provided, 4.5m minimum

(M) MEDIAN - 6.0m line to line desirable minimum
For protection of turning vehicles
& pedestrians, see Fig 3.6.7.4

B = BORDER
P = PARKING
SM = SHOULDER
TL = TRAFFIC LANE

(1) OUTER SEPARATOR - 2.4m line to line desirable minimum
Increase to 5.4m
for intended bus lanes,

(1) LEFT LANE WIDTH MAY BE INCREASED -
- 4.5m to line for bicycles & cars
- 4.0m to line for buses, or more
than 200 trucks/hour design volume

(2) PARKING MAY BE PERMITTED IN OFF-PEAK PERIODS
Figure V4.6: Typical Rural Road Cross Sections (from RDG Figure 3.14.4)

**UNSEALED SINGLE LANE ACCESS**

**SEALED SINGLE LANE ACCESS**

**TWO LANE TWO WAY**

C or B CLASS ROADS

**C or B CLASS ROADS**

A CLASS ROADS

**NOTES**

1. SHOULDER WIDTH 1.5m ON C CLASS ROADS
   SHOULDER WIDTH 2.5m ON B CLASS ROADS
2. SHOULDER WIDTH 2.0m WITH 1.5m SEALED ON A CLASS ROADS WITH AADT>1500
   SHOULDER WIDTH 2.5m WITH 1.5m SEALED ON A CLASS ROADS WITH AADT>1500
3. LANE WIDTH 3.1m ON A CLASS ROADS WITH AADT>1500
   LANE WIDTH 3.5m ON A CLASS ROADS WITH AADT>1500
4.6 Roadside Drainage

Refer VicRoads Standard Drawings for Roadworks SD1521 and SD1531.

Catch Drain Type A may be used where the natural materials are not dispersible and erodible. The minimum practical width for construction of a flat bottomed drain is 2m, but 2.5m is preferable.

Catch Drain Type B may be used for small flows in non-erodible materials. The mounded catch drain shall be used above cut batters where the natural material is erodible, or wherever it is necessary to achieve minimum disturbance of existing vegetation.

4.6.4 Kerb and channel

For Pram Crossing details refer AGRD Part 4, Section 8.2.4, Australian Standard AS 1428.1 and RDN 06-06.

V4.6.4.1 Kerb & Channel Types (from RDG 3.6.11.4)

There are four basic types of kerb, kerb and channel or channel combinations:

a) Fully Mountable Kerb
b) Semi-Mountable Kerb
c) Barrier Kerbs
d) Channels

Examples of each type are illustrated in Figure V4.8. For dimensions of kerbs and kerb terminals refer to VicRoads Standard Drawings for Roadworks, SD2001.

Figure V4.8: Kerb and Channel Types (from RDG Figure 3.6.11.4)
V4.6.4.2 Mountable Kerb and Channel (from RDG 3.6.11.5)
Mountable kerb is suitable for:

- the outside of curves on interchange ramps;
- on the approach noses of traffic islands which are likely to be trafficked;
- types M4, M5, M6 on SD2001 are for separation of normal traffic lanes from special areas intended for use by long or over dimensional vehicles in medians or on roundabouts. These shall not be placed where pedestrians or cyclists will cross the kerb, as they could pose a tripping hazard.

V4.6.4.3 Barrier Kerbs (from RDG 3.6.11.7)
Barrier kerb shall not be used on high speed and intermediate speed roads, as it is more likely to trip and overturn an errant vehicle. It is not recommended for use under safety barriers on high speed routes because the rail deflects on impact and the barrier kerb and rail combination may form a ramp to launch an errant vehicle.

Barrier kerb is suitable for:

- drainage behind guardrail;
- car parks, shopping areas;
- matching into council kerbing;
- under or close to bridge railing;
- indented bus bays.

V4.6.4.4 Channels (from RDG 3.6.11.8)
Channel types CD2 to CD4 have more drainage capacity than kerb and channel, and may be used as a catch drain adjacent to the high side of carriageway provided that the specified clearance is provided to the nearest traffic lane.

The curved channels CD2 and CD3 could create steering problems, and CD4 channel could create tripping problems. For this reason these channels should not be located adjacent to or close to the edge of traffic lanes. As vehicles can roll when tripped at relatively low speeds, other options should be considered before channels are located on the outside of curves.

V4.6.4.5 Kerb and Channel on Structures (from RDG 3.6.11.9 - modified)
Where there is a footpath in front of a bridge barrier or road safety barrier, SM type kerb and channel shall be used. Where B type kerb and channel is used, the face of the kerb shall be located directly below the face of barrier rail. Refer to Figure V4.9 for layout details.
VicRoads Supplement to Austroads Guide to Road Design, Part 3 – Rev. 4.0
January 2017

16

V4.6.4.6 Clearance to Kerbs (from RDG 3.6.12.3)

Clarification

When longitudinal barriers such as kerb and channel, safety barriers, or retaining walls are located adjacent to traffic lanes, drivers tend to position their vehicles away from the barrier. This may reduce the effective capacity of the road. This behaviour may be countered by providing a clearance between the barrier and the traffic lane or shoulder.
The amount of clearance required depends on:

- the position of the barrier, whether adjacent to a traffic lane or a shoulder;
- the operating speed of the traffic;
- the height and type of barrier.

Clearances to different kerb types are set out in Table V4.3. These clearances do not apply where a kerb abuts a shoulder wider than 0.8m. However, the clearances set out in Table V4.3 shall apply to CD type channels abutting shoulders.

Kerbs located in the vicinity of a road safety barrier can affect the vehicle trajectory and hence the effectiveness of the barrier (refer AGRD Part 6). Therefore, the placement of kerb and channel must be considered in conjunction with the Road Safety Design Process and offset requirements detailed in AGRD Part 6 and VicRoads supplementary information.

Table V4.3: Minimum Clearance from Line of Kerb to Traffic Lane
(from RDG 3.6.12.3)

<table>
<thead>
<tr>
<th>SPEED Operating Speed (km/h)</th>
<th>KERB TYPE</th>
<th>MINIMUM CLEARANCE Edge of lane to line of kerb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-60</td>
<td>HPBK(4)</td>
<td>0.3</td>
</tr>
<tr>
<td>0-79</td>
<td>B(4) or SM</td>
<td>0</td>
</tr>
<tr>
<td>80-99</td>
<td>SM</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>CD2/CD3</td>
<td>Not permitted</td>
</tr>
<tr>
<td>100+</td>
<td>SM</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>CD2/CD3</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Freeways</td>
<td>SM</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Notes:
1. Clearances to kerbs do not apply where shoulders are wider than 0.8m.
2. The minimum width of lane abutting CD channels is 3.5m.
3. Standard kerbs and channels are shown on SD2001, SD2100 and SD2103. Channel width assumed is 0.3m.
4. Barrier kerb not recommended for speeds greater than 60km/h
5. HPBK – High Profile Barrier Kerb

4.7 Medians

4.7.1 Median Width

Clarification

Refer VicRoads Supplement to AGRD Part 6, for further information regarding median barrier requirements and hazard, treatment option and risk assessment guidance.

Table 4.15 provides minimum urban median widths for a number of scenarios. In Victoria, the minimum urban median width shall be 2.0m where signal pedestals or lighting are provided in the median (i.e. Normal Design Domain). Median widths of 1.8m and 1.5m shown as shown in the table for varying width lantern displays shall be only considered as a Design Exception. The EDD Approval process shall be adopted for proposals having median widths less than 2.0m where signal pedestals are proposed.
4.8.13 Advisory Treatments
Advisory treatments indicate or advise road users of the potential presence of cyclists and of the location where cyclists may be expected to ride on a road. They consist of pavement markings and/or warning and guide signs, and as such have no regulatory status. Refer VicRoads Traffic Engineering Manual for further information on advisory treatments to be adopted in Victoria.

4.9 High Occupancy Vehicle (HOV) Lanes

4.9.2 Bus Lanes

4.9.3 Tram/Light Rail Vehicle (LRV) Lanes – Tram Track Design Standards
The Department of Transport and the tram operator (Yarra Trams) should be contacted to confirm all horizontal and vertical clearances for light rail vehicles.

4.10 On-street Parking

4.10.3 Angle Parking
Reverse in angle parking is prohibited in Victoria.

4.10.4 Centre of Road Parking
Reversing out of centre-of-road parking is prohibited in Victoria unless signage permits.

4.11 Services Roads, Outer Separators and Footpaths

4.11.1 Service Roads (from RDG 3.2)
Additional Information
One-way service roads should be at least 7.5m wide between kerbs to allow for backing of caravans and trailers into private property. Absolute minimum width is 6m.

4.11.3 Urban Border
The width required for public utility services generally will increase according to the function of the road, that is, more services are usually present on collectors and arterials than on local streets. For guidance regarding desirable utility service widths refer to Code of Practice for Management of Infrastructure in Road Reserves (2016). Consultation with appropriate service authorities should also be undertaken regarding allowance and desired clearances for utility services. The widths specified should be achieved where new subdivisions are developed.

4.12 Bus Stops

4.12.1 General
Refer VicRoads Bus Bus Stop Guidelines, Feb 2006 for guidance regarding the provision of indented bus bays.

4.12.2 Urban (Indented bus stop bays)
Refer VicRoads Bus Bus Stop Guidelines, Feb 2006 for guidance regarding the provision of indented bus bays.

Refer VicRoads Standard Drawing SD2071 for design details of an indented bus bay layout.
4.12.3 Rural

School bus stops
Refer AGRD Part 4 for further information regarding school bus stops.

5. Sight Distance

5.1 General

Additional Information

The sight distance required depends on the characteristics of the driver, the vehicle and the environment:

Driver:
- alertness of driver,
- recognition of the hazard,
- actions available to the driver – for example, to stop, to change direction.

Vehicle:
- type of vehicle – car or truck,
- friction between the tyre and the road,
- eye height (partly a function of driver),
- speed of vehicle.

Road Environment:
- road geometry – the effects of grade and curvature on stopping distances,
- road surface – sealed or unsealed, smooth or rough,
- road illumination at night,
- placement of road furniture, hard landscaping and planting.

5.2 Sight Distance Parameters

5.2.2 Driver Reaction Time

Additional Information

Driver Reaction Time (from Rural Road Design Guide 8.2.3)

A driver reaction time of 2.5 seconds is desirable for the geometric design of all roads. However, in mid-block situations where there is an expectation for increased driver alertness, such as locations with additional signs or line marking in an urban area or, where it may not be practicable to design for a 2.5 second reaction time such as low speed alignments in difficult terrain, a minimum reaction time of 2.0 seconds may be considered.

For truck drivers, the 2.5 second time actually consists of a 2.0 second initial reaction time (which is a reflection of the fact that truck drivers are professional drivers and in traffic, are usually able to see over vehicles in front) plus a 0.5 second inherent delay in the operation of the air brake system that is used on articulated heavy vehicles.

Ageing of Drivers (from Rural Road Design Guide 8.2.4)

As people age, they experience decreasing physical and mental capabilities and become more susceptible to injury and shock. Human functions subject to deterioration due to ageing include:
- visual ability;
- attention capacity;
- reaction time; and
- contrast sensitivity.
A number of road design elements may be associated with older driver crashes in Australasia. In particular, improvements to intersection sight distances, provision for separate turn phases at traffic signals, more conspicuous traffic signal lanterns and more clearly defined vehicle paths have the potential to reduce crash and injury risk for older drivers.

7. Horizontal Alignment

7.5.1 Compound Curves

Clarification

When compound curves are being considered, the smaller radius should not be less than 50 per cent of the larger radius on roads with an operating speed less than 70 km/h and not less than 80 per cent of the larger radius on roads with an operating speed greater than 70 km/h. This relationship between curve radii also applies to broken back compound curves. A check should be made to ensure that there is sufficient superelevation within the first 10m of the start of the smaller radius to cater for the road operating speed.

7.6 Side Friction and Minimum Curve Size

Additional Information

7.6.3 Minimum Curve Radius for Motorways

Adoption of the minimum radii of horizontal curves shown in Table 7.6 provides a reasonable outcome in most contexts from a Road Safety perspective.

When motorways are expected to operate at close to capacity (or when demand exceeds capacity), it is possible that geometry, such as a curve, can adversely influence operational performance outcomes regardless of whether it conforms with values provided in Table 7.6. There is clear evidence that curves having a radius less than 600m can have a negative impact on productivity (vehicle kilometres travelled on a road segment per time) which is defined as the product of traffic speed and traffic flow.

*Austroads Guide to Smart Motorways (2016)* reflects national and international learnings from road operators and provides guidance in Section C1.4 Horizontal Alignment as follows:

“...curves in the order of 600 m radius (which meet a design speed of 110 km/h) have been known to contribute to slowing traffic and flow breakdown in a 100 km/h speed environment, particularly when associated with an upgrade and/or minimal sight distance.

Where operational speeds may be affected by alignments that restrict a comfortable free-flow speed of 100 km/h, the capacity is likely to be reduced. Typically, a capacity reduction in the order of 5% (say 100 pc/h/lane), or up to 10% if combined with other factors, could be considered.”

Operational Performance is a key measure of many projects, particularly urban freeways, so the minimum radius adopted in design should reflect the expected operational outcomes. Typically, adoption of inappropriate curve radii can result in a need to manage a bottleneck that is likely to impact on operational performance during peak flow periods.

Where the adopted design speed is 100km/h or greater and it is expected that a motorway will be operating at more than 85% of the theoretical design capacity more than 3 days per week during peak periods during the design life of the asset, a minimum curve radius of 750m shall be adopted for design. Operational and design capacities adopted for motorway analysis shall be those shown in *Austroads Guide to Smart Motorways (2016)*, Table C1 1.
7.7 Superelevation

7.7.5 Length of superelevation Development

Additional Information
(from RDG Figures 2.7.3(b) and 2.7.4(b))

Figures V7.1 and V7.2 provide additional guidance regarding the superelevation development for tangents and spirals to circular curves.

Figure V7.1: Tangent to Circle – Superelevation Development for a Two Lane Two Way Road – Tangent Circle
(from RDG Figure 2.7.3(a) in RDG Figure 2.7.3(b))

Tangent to Circle – Superelevation for One Way Crossfall Cases
(from RDG Figure 2.7.3(b) in RDG Figure 2.7.3 (b))
7.7.10 Positioning of Superelevation Runoff without Transitions

Clarification

Tangent to Circular Curve to Tangent (from RDG 2.7.5.1)

The development of superelevation runoff for tangent to circular curves is located with the larger proportion of the runoff length on the approach tangent, rather than on the circular curve. The proportion of runoff located prior to the circular curve is detailed in Table V7.1 and shown on AGRD Part 3, Figure 7.11.

Table V7.1: Portion of Superelevation Runoff (from RDG Table 2.7.1)

<table>
<thead>
<tr>
<th>Operating Speed km/h</th>
<th>No. of Lanes Rotated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20 - 70</td>
<td>0.80</td>
</tr>
<tr>
<td>80 - 130</td>
<td>0.70</td>
</tr>
</tbody>
</table>
In general, theoretical considerations favour the practice of placing a large amount of the superelevation runoff on the approach tangent. The driver may have to steer in a direction opposite to the direction to the curve ahead to stay in line. However, the maximum side friction developed on the tangent is equal to the rate of applied superelevation and is at all times less than the rate of side friction considered comfortable. A vehicle travelling at the design speed on the minimum radius curve (with maximum rate of superelevation) develops the maximum side friction considered safe and comfortable. To apply rates of superelevation less than maximum at any point on the circular curve means that vehicles travelling at the design speed develop side friction factors in excess of the desirable minimum. While the side friction developed on the approach tangent is undesirable, the development of friction factors greatly in excess of the design basis on the circular curve, results in a worse condition.

However, some form of transition path of travel can be expected on the approach tangent and onto the early part of the circular curve. What can be considered lack of superelevation at the beginning of the circular curve is compensated to some extent by the vehicle travelling a curvilinear path that is flatter than the roadway circular arc.

7.7.11 Positioning of Superelevation Runoff with Transitions
Additional Information
(from RDG 2.7.5.2)

Reverse Transition Curves
The only occasion that superelevation runoff might encroach into the circular curve is when the road alignment is in a constricted location. In this case, the shorter than normal transition curves with large superelevations, may be used to produce an acceptable alignment. The proportion of runoff located within the circular curve is detailed in Table V7.1.

8. Vertical Alignment

8.2.3 Flood Levels or Water Table (from RDG 2.5.4.2)
In flat terrain, the grade line should generally be located so as to provide a clearance of 0.5m to 1.0m between the water table and the pavement boxing at its lowest point. Further geotechnical and pavement design advice should be obtained to determine the required clearance for specific projects.

For details of design Average Recurrence Intervals and acceptable water levels, refer to AGRD Part 5 – Drainage Design.

On all projects, minimum clearances above flood levels and water tables shall be defined by the client either in the design brief or in the design specifications.

8.2.5 Underground Services
Additional Information
(from RDG 2.5.4.3(h))

The minimum cover below table drains of rural arterial roads to underground services is 1.2m, or greater if specified in writing by the owner of the service.

For additional information refer Code of Practice for Management of Infrastructure in Road Reserves (2016).
8.5 Grades

8.5.3 Maximum Grades

Additional Information
(from RDG 2.5.6.2)

The desirable maximum grade on the main road through an intersection is 2.5 per cent (2% for intersections at ramp terminals within interchanges). This should ensure that turning trucks are not subjected to excessive overturning forces while cornering. Where it is not possible to achieve the desirable 2.5 per cent maximum longitudinal grade, then the designer shall calculate the maximum adverse crossfall developed for turning vehicles. The maximum adverse crossfall in any direction should not exceed 5 per cent.

A procedure for calculating maximum effective adverse crossfall is included in VicRoads Supplement to AGRD Part 4A, Section 2.2.4. Details of the effects of adverse superelevation and curve radii on turning trucks are included in AGRD Part 4A, Appendix C.

8.6 Vertical Curves

8.6.1 General

Additional Information
(from RDG 2.5.A.3)

Limitations on the use of K values

K is used because it enables vertical curves to be specified with a single parameter. It does, however, have the following limitations:

1. the K values are calculated on the assumption that the alignment is straight. This is the worst case. Any curvature in the alignment shifts the line of sight to the inside of the curve where the pavement is lower. The lowering of the pavement effectively increases the K value of the vertical curve increasing the sight distance available. On low radius curves, the line of sight can be clear of the pavement in the critical area. The effect of this will, in most cases, increase the sight distance available relative to a straight alignment. Exceptions could occur when the line of sight is interrupted by a batter or solid barrier.

2. as the change in K depends on the radius of the curve, the sight distance, and factors which are site specific, the optimum solution is most easily obtained from graphical plots along the line of sight.

3. the K value is based on the assumption that the line of sight remains on the vertical curve (i.e. in the longitudinal direction). Again, this is the worst case position. When the line of sight extends beyond the vertical curve to a straight or sag curve, the sight distance increases. This effect is shown by the curved lines on Figure V8.4. Note that Figure V8.4 is based on superseded stopping sight distance criteria and is provided for additional information only.
Three sections of the curves on Figure V8.4 require explanation:

(a) the curved section where \( L < S \) i.e. where the length of the curve is less than the sight distance required.

On this curved section of the graph it is theoretically possible to use a vertical curve length which is slightly less than the length obtained from \( AGRD \) Equation 17 \( (L = KA) \) because sight distance available to the driver extends onto the straight on the approach to the curve. As use of K values in this range provide conservative answers, and the differences are small, it is rarely necessary to take this effect into account. If necessary, however, the minimum curve length for this section can be calculated from \( AGRD \) Equation 19 (reproduced below).

(b) The vertical lines forming the left hand limits of the curves indicate the minimum practical length of curve. These minimum lengths are specified on \( AGRD \) Part 3, Table 8.10.

(c) the lower limits to the vertical lines indicate points where the grade change is not sufficient to warrant the construction of a vertical curve. These minimum grade changes are shown in \( AGRD \) Part 3, Table 8.12.

Other features of the graphs on Figure V8.4 are explained below:

1. the straight lines if extended downwards would all start at point \((0, 0)\). This indicates that the lines can be represented by the formula \( L = KA \).

2. when the curve length is less than the sight distance, the effect of the parabola on sight distance is reduced.

This creates the curving section on Figure V8.4. The formula for vertical curve lengths represented by this section is \( AGRD \) Equation 19:

\[
L = 2S - \frac{200}{A} (\sqrt{h_1} + \sqrt{h_2})^2
\]

3. because very short vertical curves are both unsightly and impractical to construct, minimum curve lengths are specified for each design speed \( AGRD \) Part 3 Table 8.10. An exception applies on intersection approaches at which all vehicles are required either to stop or to give way. In these circumstances short vertical curves, with lengths in the order of 4m to 10m may be used.
9. **Auxiliary Lanes**

9.5 **Climbing Lanes**

9.5.1 **General**

Additional Information
(from RDG 2.8.5.7)

Climbing lanes commonly occur in the overlapping lane “before” configuration, see Figure 9.4. The geometric details are shown on Figure V9.5.

Climbing lanes should be extended for 200m to 300m beyond the crest of the hill to enable trucks to accelerate to a speed close to highway operating speed. This requirement is in addition to the minimum sight distance criterion.

![Figure V9.5: Typical Climbing Lane](from RDG Figure 2.8.4)

9.6 **Slow Vehicle Turnouts**

9.6.2 **Slow Vehicle Turnouts**

Additional Information
(from RDG 2.8.5.3)

In mountainous terrain, occasional provision of a very short lane which allows overtaking of slow trucks may effectively reduce delays.

On low speed roads with left-hand side widening, the diverge taper may be 50m minimum, the minimum lane length 80m and the merge taper 90m minimum.
9.9  Geometric Requirements

9.9.2  Tapers

Additional Information

Table V9.1: Geometry Details of Overtaking Lanes
(from RDG Table 2.8.4.7(a))

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverge Taper</td>
<td></td>
</tr>
<tr>
<td>Left Hand Widening</td>
<td>100m (min)</td>
</tr>
<tr>
<td>Right Hand Widening</td>
<td>250m (min)</td>
</tr>
<tr>
<td>Lane Widths</td>
<td>3.5m</td>
</tr>
<tr>
<td>Merge Taper</td>
<td>165m (desirable)</td>
</tr>
</tbody>
</table>

Sight Distance Standard

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Along lane</td>
<td>Stopping Sight Distance</td>
</tr>
<tr>
<td>Along merge and diverge</td>
<td>Approach Sight Distance</td>
</tr>
<tr>
<td>Minimum length excluding taper</td>
<td>Refer Table 9.2, AGRD Part 3, Section 9.4</td>
</tr>
</tbody>
</table>

9.9.3  Starting and Termination Points

Clarification

Provide 3m shoulders at the termination of overtaking lanes, refer Table V9.2 below.

Table V9.2: Shoulder Widths
(from RDG 2.7.4.7(c))

<table>
<thead>
<tr>
<th>Shoulders</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverge Taper</td>
<td>Full width shoulders for the Road Class</td>
</tr>
<tr>
<td>Parallel Section</td>
<td>Full with shoulders, except where right-turn lane is added to an overtaking section, the left shoulder may be reduced.</td>
</tr>
<tr>
<td>Merge Taper</td>
<td>Increase width to 3m, extending at least 40m beyond the end of taper, then transition to full width shoulder.</td>
</tr>
</tbody>
</table>
10. Bridge Considerations

10.1 General

Further information on Kerb and Channel on Structures is given in Section 4.6.4 – Kerb and Channel of this Supplement.
Appendices

Appendix A  Extended Design Domain (EDD) for Geometric Road Design

Refer to VicRoads Supplement to AGRD Part 2 for further information regarding the use of EDD for VicRoads projects.

Appendix E  Narrow Median Treatments with Wire Rope Safety Barrier (WRSB)

Additional information – Narrow Median Treatments

Appendix E includes information to assist with designing narrow median treatments with a central safety barrier.

The criteria included in Appendix E for the development of narrow median treatment proposals are considered to be in the Extended Design Domain (EDD). The EDD approval process shall be adopted for acceptance of narrow median with central safety barrier treatments for median widths between 1.5m and 8.2m. The process for approval to the use of EDD is included in VicRoads Supplement to AGRD Part 2 – Section 2.3. For projects that do not need to be reviewed by PRC, VicRoads Regional Director Approval is required.

When a central road safety barrier in a narrow median is proposed, the clearance from the edge of the traffic lane to the barrier shall be in accordance with Table E1, noting that an absolute minimum offset of 1m is generally required. Table E1 also contains further information regarding roadside hazards, treatment options and risk assessment guidance.

Key requirements and restrictions regarding the use of a narrow median with a central road safety barrier are shown in AGRD Part 3, Table E1. Other design details regarding this treatment are contained in AGRD Part 3, Figure E2.

Appendix I  Reverse Curves

Additional Information (from RDG Part 2.7)

The following figures (Figure VI1.1, Figure VI1.2(a) and Figure VI1.2(b)) are provided as additional cases for the design of reverse curves.
REVERSE CURVES

Figure VI1.1: Superelevation Development for Reverse Curves with Short Tangent
(from RDG 2.7.5(a))

REVERSE CURVES WITH SPIRALS

Figure VI1.2(a): Superelevation Development on Reverse Curves with Spirals
(from RDG Figure 2.7.6(a))
Figure VI1.2(b): Use of Minimum Superelevation Length to Improve Drainage (from RDG Figure 2.7.6(b))

![Superelevation Development Diagram](image)

Figure VE1.3: Compound Curves (from RDG Figure 2.7.7)

![Compound Curves](image)

Figure 7-71

![Superelevation Development Diagram](image)

Figure 7-72
Appendix J  Transition Curves (from RDG Part 2 Appendix F4)

Additional information

J.4 Characteristics of the Euler Spiral (Clothoid)
(from RDG Appendix 2.4.D)

VJ.4.1 Standard Notation for Spirals

Figure VJ 1.1: Spiral Notation
(from RDG Figure 2.4.D.1)

T.S. = point of change from tangent to spiral.
S.C. = point of change from spiral to circle.
$L_{sp}$ = length of spiral from T.S to S.C (metres).
$L$ = length in metres from the T.S along the curve to any point on the spiral.
$v$ = design speed in metres per second.
$V$ = design speed in kilometres per hour.
$I$ = intersection angle in degrees.
$R$ = radius in metres of the circular arc (or radius of the spiral at the S.C).
$R_L$ = radius at distance $L$ along the spiral.
$x, y$ = abscissa and ordinate respectively of any point on the spiral with reference to the T.S and the initial tangent.
$x_c, y_c$ = co-ordinates of the S.C.
$\Theta, \Theta_S$ = spiral angle at any point and at S.C. respectively.
$\Theta, \Theta_c$ = polar angle = spiral deflection angle at the T.S. from the initial tangent to any point on the spiral and to the S.C. respectively.
$c$ = long chord distance = chord distance from T.S. to any point on the spiral.
$\Theta-\Theta$ = back angle = Angle between the long chord and the tangent to the spiral at any point on the spiral.
PC point = the point on the circle at which the radius is normal to the initial tangent.
$p$ = shift = Offset from the tangent to the S.T.C.
$K$ = abscissa of the offset at P.C measured from the T.S.
$K_s$ = displacement of tangent point along the tangent due to the introduction of a spiral.
$T$ = tangent distance = distance from I.P to T.S.
$S$ = design secant distance.
$F$ = design friction factor.
$E$ = superelevation in percent.
$A$ = rate of change of acceleration \((m/s^3)\) on transition curve at design speed.
VJ.4.2 EULER SPIRAL

Spirals can be defined using a number of mathematical equations. The spiral used by VicRoads is the EULER SPIRAL.

In its simplest form the equation for the Euler spiral is;

\[ R_L = \text{constant} = K_s \]

Where,

- \( L \) = length along the spiral from the start to a specified point.
- \( R_L \) = radius at distance \( L \) along the spiral

From the equation it can be seen that \( R_L \) decreases as \( L \) increases. The numerical value of \( K_s \) fixes the shape of the curve as shown on Figure VJ1.2.

**Figure VJ 1.2: Effect of LR Constant on Spiral Shape**

(from RDG Figure 2.4.D.2)

In road design both the length of the spiral (\( L_{sp} \)) and the radius of the circular curve at the end of the spiral (\( R \)) are fixed for each spiral.

\[ L_{sp} \times R = K_s \]

\[ L_{sp} \times R = L \times R_L \]

\[ \phi = \frac{L^2}{2R L_{sp}} \quad \text{.... radians} \]

One other spiral equation commonly used is where \( \phi \) is the angle between the approach tangent and a tangent at distance \( L \) from the start, as shown on Figure VJ1.3.

**Figure VJ 1.3: Deflection Angle along Euler Spiral**

(from RDG Figure 2.4.D.3)
There are two important properties of the Euler Spiral illustrated on Figure VJ1.4:

1. The PC point is the location where the TC would be if the spiral were not provided. This point is approximately half way along the spiral.

2. The offset between the tangent and the PC is approximately equal to \( p/2 \) where \( p \) is the total shift.

**Figure VJ.4: Location of the PC Point**
(from RDG Figure 2.4.D.4)

**Notes:**

1. This drawing has been exaggerated to illustrate the geometry.

2. For location of the spiral with respect to superelevation development, see *AGRD Part 3, Section 7.5 and 7.7.*
V1.3 List of Spiral Equations
(from RDG 2.4.D.3)

\[ T \quad (\text{Tangent Distance}) \quad = \quad (R \quad + \quad \text{shift}) \quad \tan \frac{L}{2} \quad + \quad K \]

\[ S \quad (\text{Secant Distance}) \quad = \quad (R \quad + \quad \text{shift}) \quad \sec \frac{L}{2} \quad - \quad R \]

\[ (\text{Circ Arc}) \quad = \quad R \quad (I \quad - \quad 2\phi_s) \quad \text{where} \quad I \quad \text{and} \quad \phi_s \quad \text{are both expressed in radians} \]
\[ \quad (I \quad - \quad 2\phi_s) \quad \frac{D}{D} \quad \times \quad 100 \]

\[ x \quad (\text{Abscissa}) \quad = \quad \int_0^L \cos \phi \; dL \quad = \quad L \quad (1 \quad - \quad \frac{\phi^2}{5.2!} \quad + \quad \frac{\phi^4}{9.4!} \quad - \quad \frac{\phi^6}{13.6!} \quad + \quad ...) \]
\[ \quad = \quad L \quad - \quad \frac{L^5}{40(RL_{sp})^2} \]

\[ y \quad (\text{Ordinate}) \quad = \quad \int_0^L \sin \phi \; dL \quad = \quad L \quad (\frac{\phi^3}{3!} \quad - \quad \frac{\phi^5}{7.4!} \quad + \quad \frac{\phi^7}{11.6!} \quad - \quad ...) \]
\[ \quad = \quad L^3 \quad - \quad \frac{L^3}{6(RL_{sp})} \quad - \quad \frac{L^7}{336(RL_{sp})^3} \]

\[ p \quad (\text{Shift}) \quad = \quad y \quad R \quad \text{Versin} \quad \phi_s \quad = \quad \frac{L_{sp}}{2} \quad \left( \frac{\phi_s^2}{3.2!} \quad - \quad \frac{\phi_s^4}{7.4!} \quad + \quad \frac{\phi_s^6}{11.6!} \quad - \quad ...ight) \]
\[ \quad = \quad \frac{L_{sp}^2}{24R} \quad - \quad \frac{L_{sp}^4}{2688 R^3} \]

\[ K \quad = \quad x \quad - \quad R \quad \sin \phi_s \quad = \quad \frac{L_{sp}}{2} \quad (1 \quad - \quad \frac{\phi_s^2}{5.3!} \quad + \quad \frac{\phi_s^4}{9.5!} \quad - \quad \frac{\phi_s^6}{13.7!} \quad + \quad ...) \]
\[ \quad = \quad \frac{L_{sp}^2}{2} \quad - \quad \frac{L_{sp}^3}{240 R^2} \]

\[ K_e \quad (\text{Spiral constant}) \quad = \quad L_e \quad \times \quad R \quad \frac{1}{1} \]

\[ \phi \quad (\text{Spiral Angle}) \quad = \quad \frac{L^2}{2RL_{sp}} \quad \text{radians} \]

\[ \phi_s \quad = \quad \frac{L_{sp}}{2R} \quad \text{radians} \]

\[ A \quad (\text{Rate of change of acceleration}) \quad = \quad \frac{v^3}{L_{sp} R} \quad = \quad \frac{V^3}{46.656 L_{sp} R} \]
This document is copyright. No part of it can be used, amended or reproduced by any process without written permission of the Director Network Design Services of the Roads Corporation Victoria.

This VicRoads Supplement has been developed by VicRoads Network Design Services and authorised by the Director- Network Design Services.

The VicRoads Supplement to the Austroads Guide to Road Design provides additional information, clarification or jurisdiction specific design information and procedures which may be used on works financed wholly or in part by funds from VicRoads beyond that outlined in the Austroads Guide to Road Design guides.

Although this publication is believed to be correct at the time of printing, VicRoads does not accept responsibility for any consequences arising from the information contained in it. People using the information should apply, and rely upon, their own skill and judgement to the particular issue which they are considering. The procedures set out will be amended from time to time as found necessary.