

Test Method

Bulk Density of Compacted Asphalt - Presaturation Method

RC 202.02

1. Scope

This method details the apparatus and procedures to be followed to determine the bulk density of dense graded asphalt cylindrical specimens.

2. Apparatus

- (a) Top loading balance with adequate capacity and a limit of performance of not exceeding \pm 0.5 q.
- (b) Suspension device to suspend the asphalt specimen in the water bath under the balance.
- (c) Water container, filled with water, with a device to maintain a constant water level and of sufficient capacity to contain the suspended asphalt specimen.
- (d) Rigid suspension bridge to support the balance and suspension device over the water container.
- (e) Timer accurate to 5 seconds.
- (f) Temperature measuring device graduated to 1 °C over the range of the test temperatures used.

3. Test Sample

The asphalt sample may be either compacted in the laboratory according to AS 2891.2.2, AS 2891.5 or cored from the pavement in accordance with AS 2891.1.

4. Procedure

The procedure shall be as follows:

- (a) Clean all loose material from the sample and air dry the sample to constant mass. Determine the mass of the sample (m₁).
- (b) Immerse the sample in the water container for at least 2 hours.
- (c) Position the water container immediately beneath the balance, supported on the suspension bridge, and attach the suspension device.

- (d) Zero the balance.
- (e) Transfer the sample to the suspension device under water ensuring the sample remains completely immersed. Remove any air bubbles adhering to the sample and determine its mass (m₂).
- (f) Remove the sample from the suspension device and allow it to freely drain above the water container for 5 ± 1 seconds.
- (g) Immediately determine the mass of the wet sample (m_3) .
- (h) Determine the temperature of the water in which the specimen was soaking to the nearest 1 °C.

5. Calculation

Calculate the bulk density of the specimen (ρ_{bulk}) from the following equation:

$$\rho_{bulk} = \frac{m_1 \; \rho_w}{m_3 - m_2}$$

where: ρ_w = density of water at the test temperature (see Table 1) in t/m³

 m_1 , m_2 , m_3 = masses, determined above

6. Reporting

Report the bulk density to the nearest 0.001 tonnes per cubic metre.

Table 1 Variation of Water Density with Temperature		
Temperature °C	Density of water $\left(ho_{w} \right) \ t/m^{3}$	
0 to12 13 to17 18 to 23 24 to 27 28 to 30 30 to 33 34 to 36 37 to 39 40	1.000 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992	

Test Method - Revision Summary

RC 202.02 Bulk Density of Compacted Asphalt - Presaturation Method

Date	Clause Number	Description of Revision	Authorised by
June 2013	Full document Step 5	Re-issued without change, except Defined masses	Manager Construction Materials

vicroads

Page 2 of 2